3.3.95 \(\int (7+5 x^2) (2+3 x^2+x^4)^{3/2} \, dx\) [295]

3.3.95.1 Optimal result
3.3.95.2 Mathematica [C] (verified)
3.3.95.3 Rubi [A] (verified)
3.3.95.4 Maple [C] (verified)
3.3.95.5 Fricas [C] (verification not implemented)
3.3.95.6 Sympy [F]
3.3.95.7 Maxima [F]
3.3.95.8 Giac [F]
3.3.95.9 Mupad [F(-1)]

3.3.95.1 Optimal result

Integrand size = 22, antiderivative size = 179 \[ \int \left (7+5 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2} \, dx=\frac {116 x \left (2+x^2\right )}{15 \sqrt {2+3 x^2+x^4}}+\frac {1}{105} x \left (519+149 x^2\right ) \sqrt {2+3 x^2+x^4}+\frac {1}{63} x \left (108+35 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2}-\frac {116 \sqrt {2} \left (1+x^2\right ) \sqrt {\frac {2+x^2}{1+x^2}} E\left (\arctan (x)\left |\frac {1}{2}\right .\right )}{15 \sqrt {2+3 x^2+x^4}}+\frac {197 \sqrt {2} \left (1+x^2\right ) \sqrt {\frac {2+x^2}{1+x^2}} \operatorname {EllipticF}\left (\arctan (x),\frac {1}{2}\right )}{35 \sqrt {2+3 x^2+x^4}} \]

output
1/63*x*(35*x^2+108)*(x^4+3*x^2+2)^(3/2)+116/15*x*(x^2+2)/(x^4+3*x^2+2)^(1/ 
2)-116/15*(x^2+1)^(3/2)*(1/(x^2+1))^(1/2)*EllipticE(x/(x^2+1)^(1/2),1/2*2^ 
(1/2))*2^(1/2)*((x^2+2)/(x^2+1))^(1/2)/(x^4+3*x^2+2)^(1/2)+197/35*(x^2+1)^ 
(3/2)*(1/(x^2+1))^(1/2)*EllipticF(x/(x^2+1)^(1/2),1/2*2^(1/2))*2^(1/2)*((x 
^2+2)/(x^2+1))^(1/2)/(x^4+3*x^2+2)^(1/2)+1/105*x*(149*x^2+519)*(x^4+3*x^2+ 
2)^(1/2)
 
3.3.95.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.82 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.66 \[ \int \left (7+5 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2} \, dx=\frac {5274 x+12745 x^3+12018 x^5+5962 x^7+1590 x^9+175 x^{11}-2436 i \sqrt {1+x^2} \sqrt {2+x^2} E\left (\left .i \text {arcsinh}\left (\frac {x}{\sqrt {2}}\right )\right |2\right )-1110 i \sqrt {1+x^2} \sqrt {2+x^2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {x}{\sqrt {2}}\right ),2\right )}{315 \sqrt {2+3 x^2+x^4}} \]

input
Integrate[(7 + 5*x^2)*(2 + 3*x^2 + x^4)^(3/2),x]
 
output
(5274*x + 12745*x^3 + 12018*x^5 + 5962*x^7 + 1590*x^9 + 175*x^11 - (2436*I 
)*Sqrt[1 + x^2]*Sqrt[2 + x^2]*EllipticE[I*ArcSinh[x/Sqrt[2]], 2] - (1110*I 
)*Sqrt[1 + x^2]*Sqrt[2 + x^2]*EllipticF[I*ArcSinh[x/Sqrt[2]], 2])/(315*Sqr 
t[2 + 3*x^2 + x^4])
 
3.3.95.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {1490, 1490, 27, 1503, 1412, 1455}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (5 x^2+7\right ) \left (x^4+3 x^2+2\right )^{3/2} \, dx\)

\(\Big \downarrow \) 1490

\(\displaystyle \frac {1}{21} \int \left (149 x^2+222\right ) \sqrt {x^4+3 x^2+2}dx+\frac {1}{63} x \left (35 x^2+108\right ) \left (x^4+3 x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 1490

\(\displaystyle \frac {1}{21} \left (\frac {1}{15} \int \frac {6 \left (406 x^2+591\right )}{\sqrt {x^4+3 x^2+2}}dx+\frac {1}{5} x \sqrt {x^4+3 x^2+2} \left (149 x^2+519\right )\right )+\frac {1}{63} x \left (35 x^2+108\right ) \left (x^4+3 x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{21} \left (\frac {2}{5} \int \frac {406 x^2+591}{\sqrt {x^4+3 x^2+2}}dx+\frac {1}{5} x \sqrt {x^4+3 x^2+2} \left (149 x^2+519\right )\right )+\frac {1}{63} x \left (35 x^2+108\right ) \left (x^4+3 x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 1503

\(\displaystyle \frac {1}{21} \left (\frac {2}{5} \left (591 \int \frac {1}{\sqrt {x^4+3 x^2+2}}dx+406 \int \frac {x^2}{\sqrt {x^4+3 x^2+2}}dx\right )+\frac {1}{5} x \sqrt {x^4+3 x^2+2} \left (149 x^2+519\right )\right )+\frac {1}{63} x \left (35 x^2+108\right ) \left (x^4+3 x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 1412

\(\displaystyle \frac {1}{21} \left (\frac {2}{5} \left (406 \int \frac {x^2}{\sqrt {x^4+3 x^2+2}}dx+\frac {591 \left (x^2+1\right ) \sqrt {\frac {x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),\frac {1}{2}\right )}{\sqrt {2} \sqrt {x^4+3 x^2+2}}\right )+\frac {1}{5} x \sqrt {x^4+3 x^2+2} \left (149 x^2+519\right )\right )+\frac {1}{63} x \left (35 x^2+108\right ) \left (x^4+3 x^2+2\right )^{3/2}\)

\(\Big \downarrow \) 1455

\(\displaystyle \frac {1}{21} \left (\frac {2}{5} \left (\frac {591 \left (x^2+1\right ) \sqrt {\frac {x^2+2}{x^2+1}} \operatorname {EllipticF}\left (\arctan (x),\frac {1}{2}\right )}{\sqrt {2} \sqrt {x^4+3 x^2+2}}+406 \left (\frac {x \left (x^2+2\right )}{\sqrt {x^4+3 x^2+2}}-\frac {\sqrt {2} \left (x^2+1\right ) \sqrt {\frac {x^2+2}{x^2+1}} E\left (\arctan (x)\left |\frac {1}{2}\right .\right )}{\sqrt {x^4+3 x^2+2}}\right )\right )+\frac {1}{5} x \sqrt {x^4+3 x^2+2} \left (149 x^2+519\right )\right )+\frac {1}{63} x \left (35 x^2+108\right ) \left (x^4+3 x^2+2\right )^{3/2}\)

input
Int[(7 + 5*x^2)*(2 + 3*x^2 + x^4)^(3/2),x]
 
output
(x*(108 + 35*x^2)*(2 + 3*x^2 + x^4)^(3/2))/63 + ((x*(519 + 149*x^2)*Sqrt[2 
 + 3*x^2 + x^4])/5 + (2*(406*((x*(2 + x^2))/Sqrt[2 + 3*x^2 + x^4] - (Sqrt[ 
2]*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticE[ArcTan[x], 1/2])/Sqrt[2 + 
 3*x^2 + x^4]) + (591*(1 + x^2)*Sqrt[(2 + x^2)/(1 + x^2)]*EllipticF[ArcTan 
[x], 1/2])/(Sqrt[2]*Sqrt[2 + 3*x^2 + x^4])))/5)/21
 

3.3.95.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1412
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q)*x^2)/(2*a + 
(b + q)*x^2)]/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] && 
!(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1455
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b + q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*(Sqrt[(2*a + (b - q 
)*x^2)/(2*a + (b + q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] &&  !(PosQ[ 
(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, 
c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1490
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(2*b*e*p + c*d*(4*p + 3) + c*e*(4*p + 1)*x^2)*((a + b*x^2 + c 
*x^4)^p/(c*(4*p + 1)*(4*p + 3))), x] + Simp[2*(p/(c*(4*p + 1)*(4*p + 3))) 
 Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) 
- b^2*e*(2*p + 1))*x^2, x]*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 
3.3.95.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.17 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.77

method result size
risch \(\frac {x \left (175 x^{6}+1065 x^{4}+2417 x^{2}+2637\right ) \sqrt {x^{4}+3 x^{2}+2}}{315}-\frac {197 i \sqrt {2}\, \sqrt {2 x^{2}+4}\, \sqrt {x^{2}+1}\, F\left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )}{35 \sqrt {x^{4}+3 x^{2}+2}}+\frac {58 i \sqrt {2}\, \sqrt {2 x^{2}+4}\, \sqrt {x^{2}+1}\, \left (F\left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )-E\left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )\right )}{15 \sqrt {x^{4}+3 x^{2}+2}}\) \(138\)
default \(\frac {71 x^{5} \sqrt {x^{4}+3 x^{2}+2}}{21}+\frac {2417 x^{3} \sqrt {x^{4}+3 x^{2}+2}}{315}+\frac {293 x \sqrt {x^{4}+3 x^{2}+2}}{35}-\frac {197 i \sqrt {2}\, \sqrt {2 x^{2}+4}\, \sqrt {x^{2}+1}\, F\left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )}{35 \sqrt {x^{4}+3 x^{2}+2}}+\frac {58 i \sqrt {2}\, \sqrt {2 x^{2}+4}\, \sqrt {x^{2}+1}\, \left (F\left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )-E\left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )\right )}{15 \sqrt {x^{4}+3 x^{2}+2}}+\frac {5 x^{7} \sqrt {x^{4}+3 x^{2}+2}}{9}\) \(172\)
elliptic \(\frac {71 x^{5} \sqrt {x^{4}+3 x^{2}+2}}{21}+\frac {2417 x^{3} \sqrt {x^{4}+3 x^{2}+2}}{315}+\frac {293 x \sqrt {x^{4}+3 x^{2}+2}}{35}-\frac {197 i \sqrt {2}\, \sqrt {2 x^{2}+4}\, \sqrt {x^{2}+1}\, F\left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )}{35 \sqrt {x^{4}+3 x^{2}+2}}+\frac {58 i \sqrt {2}\, \sqrt {2 x^{2}+4}\, \sqrt {x^{2}+1}\, \left (F\left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )-E\left (\frac {i \sqrt {2}\, x}{2}, \sqrt {2}\right )\right )}{15 \sqrt {x^{4}+3 x^{2}+2}}+\frac {5 x^{7} \sqrt {x^{4}+3 x^{2}+2}}{9}\) \(172\)

input
int((5*x^2+7)*(x^4+3*x^2+2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/315*x*(175*x^6+1065*x^4+2417*x^2+2637)*(x^4+3*x^2+2)^(1/2)-197/35*I*2^(1 
/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2)^(1/2)*EllipticF(1/2*I*2^(1 
/2)*x,2^(1/2))+58/15*I*2^(1/2)*(2*x^2+4)^(1/2)*(x^2+1)^(1/2)/(x^4+3*x^2+2) 
^(1/2)*(EllipticF(1/2*I*2^(1/2)*x,2^(1/2))-EllipticE(1/2*I*2^(1/2)*x,2^(1/ 
2)))
 
3.3.95.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.35 \[ \int \left (7+5 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2} \, dx=\frac {-2436 i \, x E(\arcsin \left (\frac {i}{x}\right )\,|\,2) + 5982 i \, x F(\arcsin \left (\frac {i}{x}\right )\,|\,2) + {\left (175 \, x^{8} + 1065 \, x^{6} + 2417 \, x^{4} + 2637 \, x^{2} + 2436\right )} \sqrt {x^{4} + 3 \, x^{2} + 2}}{315 \, x} \]

input
integrate((5*x^2+7)*(x^4+3*x^2+2)^(3/2),x, algorithm="fricas")
 
output
1/315*(-2436*I*x*elliptic_e(arcsin(I/x), 2) + 5982*I*x*elliptic_f(arcsin(I 
/x), 2) + (175*x^8 + 1065*x^6 + 2417*x^4 + 2637*x^2 + 2436)*sqrt(x^4 + 3*x 
^2 + 2))/x
 
3.3.95.6 Sympy [F]

\[ \int \left (7+5 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2} \, dx=\int \left (\left (x^{2} + 1\right ) \left (x^{2} + 2\right )\right )^{\frac {3}{2}} \cdot \left (5 x^{2} + 7\right )\, dx \]

input
integrate((5*x**2+7)*(x**4+3*x**2+2)**(3/2),x)
 
output
Integral(((x**2 + 1)*(x**2 + 2))**(3/2)*(5*x**2 + 7), x)
 
3.3.95.7 Maxima [F]

\[ \int \left (7+5 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2} \, dx=\int { {\left (x^{4} + 3 \, x^{2} + 2\right )}^{\frac {3}{2}} {\left (5 \, x^{2} + 7\right )} \,d x } \]

input
integrate((5*x^2+7)*(x^4+3*x^2+2)^(3/2),x, algorithm="maxima")
 
output
integrate((x^4 + 3*x^2 + 2)^(3/2)*(5*x^2 + 7), x)
 
3.3.95.8 Giac [F]

\[ \int \left (7+5 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2} \, dx=\int { {\left (x^{4} + 3 \, x^{2} + 2\right )}^{\frac {3}{2}} {\left (5 \, x^{2} + 7\right )} \,d x } \]

input
integrate((5*x^2+7)*(x^4+3*x^2+2)^(3/2),x, algorithm="giac")
 
output
integrate((x^4 + 3*x^2 + 2)^(3/2)*(5*x^2 + 7), x)
 
3.3.95.9 Mupad [F(-1)]

Timed out. \[ \int \left (7+5 x^2\right ) \left (2+3 x^2+x^4\right )^{3/2} \, dx=\int \left (5\,x^2+7\right )\,{\left (x^4+3\,x^2+2\right )}^{3/2} \,d x \]

input
int((5*x^2 + 7)*(3*x^2 + x^4 + 2)^(3/2),x)
 
output
int((5*x^2 + 7)*(3*x^2 + x^4 + 2)^(3/2), x)